АдукацыяНавука

Квантавая заблытанасць: тэорыя, прынцып, эфект

Ярка блішчала залацістая асенняе лісце дрэў. Прамяні вячэрняга сонца закранулі парадзелай верхавін. Святло прабіўся скрозь галінкі і зладзіў спектакль з мудрагелістых фігур, якія мільгалі на сцяне універсітэцкай «каптёрки».

Задуменны погляд сэра Гамільтана павольна слізгаў, назіраючы за гульнёй святлаценю. У галаве ірландскага матэматыка ішла сапраўдная плавільня думак, ідэй і высноў. Ён выдатна разумеў, што тлумачэнне многіх з'яў з дапамогай ньютоновской механікі падобна гульні ценяў на сцяне, зманліва сплятаюцца фігуры і пакідаюць без адказу многія пытанні. «Магчыма, гэта хваля ... а можа быць, паток часціц, - разважаў вучоны, - або святло з'яўляецца праявай абодвух з'яў. Падобна постацям, вытканых з ценю і святла ".

Пачатак квантавай фізікі

Цікава назіраць за вялікімі людзьмі і спрабаваць ўсвядоміць, як нараджаюцца вялікія ідэі, якія змяняюць ход эвалюцыі ўсяго чалавецтва. Гамільтан - адзін з тых, хто стаяў ля вытокаў зараджэння квантавай фізікі. Праз пяцьдзесят гадоў, у пачатку дваццатага стагоддзя, вывучэннем элементарных часціц займаліся шматлікія навукоўцы. Атрыманыя веды былі супярэчлівыя і нескомпилированы. Аднак першыя хісткія крокі былі зробленыя.

Разуменне мікрасвету ў пачатку ХХ стагоддзя

У 1901 годзе была прадстаўлена першая мадэль атама і паказана яе безгрунтоўнасць, з пазіцыі звычайнай электрадынамікі. У гэты ж перыяд Макс Планк і Нільс Бор публікуюць мноства прац аб прыродзе атама. Нягледзячы на іх карпатлівая праца, поўнага разумення структуры атама не існавала.

Праз некалькі гадоў, у 1905 году, малавядомы нямецкі вучоны Альберт Эйнштэйн апублікаваў даклад аб магчымасці існавання светлавога кванта ў двух станах - хвалевага і карпускулярна (часціцы). У яго працы прыводзіліся довады, у якіх тлумачылася прычыну неплацежаздольнасці мадэлі. Аднак бачанне Эйнштэйна было абмежавана старым разуменнем мадэлі атама.

Пасля шматлікіх прац Нільса Бора і яго калег у 1925 году зарадзілася новы кірунак - нейкае падабенства квантавай механікі. Распаўсюджанае выраз - «квантавая механіка» з'явілася праз трыццаць гадоў.

Што мы ведаем пра Квант і іх дзівацтвы?

На сёння квантавая фізіка сышла досыць далёка. Адкрыта шмат розных з'яў. Але што мы ведаем на самай справе? Адказ прадстаўлены адным навукоўцам сучаснасці. "У квантавую фізіку можна альбо верыць, альбо яе не разумець", - такое вызначэнне Рычарда Фейнмана. Падумайце над гэтым самі. Дастаткова будзе згадаць такая з'ява, як квантавая заблытанасць часціц. Гэта з'ява ўвяла навуковы свет у становішча поўнага здзіўлення. Яшчэ вялікім шокам стала тое, што ўзнік парадокс несумяшчальны з законамі Ньютана і Эйнштэйна.

Упершыню эфект квантавай заблытанасці фатонаў абмяркоўваўся ў 1927 годзе на пятым Солвеевском Кангрэсе. Паміж Нільсэн Борам і Эйнштэйнам паўстаў гарачая спрэчка. Парадокс квантавай спутанность цалкам змяніў разуменне сутнасці матэрыяльнага свету.

Вядома, што ўсе цела складаюцца з элементарных часціц. Адпаведна, усе з'явы квантавай механікі адлюстроўваюцца ў звычайным свеце. Нільс Бор казаў, што калі мы не глядзім на Месяц, то яно не існуе. Эйнштэйн лічыў гэта неразумным і лічыў, што аб'ект існуе незалежна ад назіральніка.

Пры вывучэнні праблем квантавай механікі варта разумець, што яе механізмы і законы ўзаемазвязаны паміж сабой і не падпарадкоўваюцца класічнай фізіцы. Паспрабуем разабрацца ў самай супярэчлівай вобласці - квантавай заблытанасці часціц.

Тэорыя квантавай заблытанасці

Для пачатку варта разумець, што квантавая фізіка падобная бяздонных калодзежа, у якім можна выявіць усё, што заўгодна. З'ява квантавай заблытанасці ў пачатку мінулага стагоддзя вывучалася Эйнштэйнам, Борам, Максвеллом, Бойла, Бэлам, Планкам і многімі іншымі фізікамі. На працягу дваццатага стагоддзя па ўсім свеце актыўна вывучалі гэта і эксперыментавалі тысячы навукоўцаў.

Свет падпарадкаваны строгім законам фізікі

Чаму такая цікавасць да парадоксаў квантавай механікі? Усё вельмі проста: мы жывем, падпарадкоўваючыся пэўных законах фізічнага свету. Уменне «абыходзіць» прадвызначанасць адкрывае магічную дзверы, за якой усё становіцца магчымым. Да прыкладу, канцэпцыя «Ката Шрёдингера» вядзе да кіравання матэрыяй. Таксама стане магчымая тэлепартацыя інфармацыі, якую выклікае квантавая заблытанасць. Перадача інфармацыі стане імгненнай, незалежна ад адлегласці.
Гэтае пытанне пакуль знаходзіцца ў стадыі вывучэння, аднак мае станоўчую тэндэнцыю.

Аналогія і разуменне

Чым жа ўнікальная квантавая заблытанасць, як яе зразумець і што адбываецца пры гэтым? Паспрабуем разабрацца. Для гэтага спатрэбіцца правесці нейкі разумовы эксперымент. Уявіце, што ў вас у руках дзве скрынкі. У кожнай з іх ляжыць па адным мячы са паласой. Цяпер адну скрынку аддаем касманаўту, і ён ляціць на Марс. Як толькі вы адкрываеце скрынку і бачыце, што паласа на мячы гарызантальная, то ў іншы скрынцы мяч аўтаматычна будзе мець вертыкальную паласу. Гэта і будзе квантавая заблытанасць простымі словамі выяўленая: адзін аб'ект прадвызначае становішча іншага.

Аднак варта разумець, што гэта толькі павярхоўнае тлумачэнне. Для таго каб атрымаць квантавую заблытанасць, неабходна, каб часціцы мелі аднолькавае паходжанне, падобна блізнятам. Вельмі важна разумець, што эксперымент будзе сарваны, калі да вас нехта меў магчымасць паглядзець хаця б на адзін з аб'ектаў.

Дзе можа быць выкарыстана квантавая спутанность?

Прынцып квантавай заблытанасці можа быць выкарыстаны для перадачы інфармацыі на вялікія адлегласці імгненна. Падобны выснову супярэчыць тэорыі адноснасці Эйнштэйна. Яна абвяшчае, што максімальная хуткасць перамяшчэння ўласцівая толькі свету - трыста тысяч кіламетраў у секунду. Падобная перадача інфармацыі дае магчымасць існавання фізічнай тэлепартацыі.

Усё ў свеце - інфармацыя, у тым ліку і матэрыя. Да такой высновы прыйшлі квантавыя фізікі. У 2008 годзе на падставе тэарэтычнай базы дадзеных атрымалася ўбачыць квантавую спутанность няўзброеным вокам.

Гэта ў чарговы раз гаворыць пра тое, што мы стаім на парозе вялікіх адкрыццяў - перамяшчэння ў прасторы і ў часе. Час у Сусвеце дыскрэтна, таму імгненнае перасоўванне на велізарныя адлегласці дае магчымасць трапляць у розную шчыльнасць часу (на падставе гіпотэз Эйнштэйна, Бора). Магчыма, у будучыні гэта будзе рэальнасцю так жа, як мабільны тэлефон сёння.

Эфиродинамика і квантавая заблытанасць

На думку некаторых вядучых навукоўцаў, квантавая спутанность тлумачыцца тым, што прастора запоўнена нейкім эфірам - чорнай матэрыяй. Любая элементарная часціца, як нам вядома, знаходзіцца ў выглядзе хвалі і корпускул (часціцы). Некаторыя навукоўцы лічаць, што ўсе часціцы знаходзяцца на «палатне» цёмнай энергіі. Зразумець гэта няпроста. Давайце паспрабуем разабрацца іншым шляхам - метадам асацыяцыі.

Уявіце сябе на беразе мора. Лёгкі брыз і слабое подых ветру. Бачыце хвалі? А недзе там, далёка, у водблісках прамянёў сонца, бачны паруснік.
Карабель будзе нашай элементарнай часціцай, а мора - эфірам (цёмнай энергіяй).
Мора можа знаходзіцца ў руху ў выглядзе бачных хваль і кропель вады. Сапраўды гэтак жа і ўсе элементарныя часціцы могуць быць проста морам (яе складнікам неад'емнай часткай) ці ж асобнай часціцай - кропляй.

Гэта спрошчаны прыклад, усе некалькі складаней. Часціцы без прысутнасці назіральніка знаходзяцца ў выглядзе хвалі і не маюць пэўнага месцазнаходжаньня.

Белы паруснік - гэта выдзелены аб'ект, ён адрозніваецца ад роўнядзі і структуры вады мора. Сапраўды гэтак жа існуюць «пікі» у акіяне энергіі, якія мы можам ўспрымаць як праява вядомых нам сіл, што сфармавалі матэрыяльную частку свету.

Мікрасвет жыве па сваіх законах

Прынцып квантавай заблытанасці можна зразумець, калі браць у ўлік тое, што элементарныя часціцы знаходзяцца ў выглядзе хваль. Не маючы пэўнага месцазнаходжання і характарыстык, абедзве часціцы знаходзяцца ў акіяне энергіі. У момант з'яўлення назіральніка хваля «ператвараецца» ў даступны дотыку аб'ект. Другая часціца, выконваючы сістэму раўнавагі, набывае супрацьлеглыя ўласцівасці.

Апісаная артыкул не накіравана на ёмістыя навуковыя апісання квантавага свету. Магчымасць асэнсавання звычайнага чалавека грунтуецца на даступнасці разумення выкладзенага матэрыялу.

Фізіка элементарных часціц вывучае заблытанасць квантавых станаў на падставе спіна (кручэння) элементарнай часціцы.

Навуковай мовай (спрошчана) - квантавая спутанность вызначаецца па рознаму спіну. У працэсе назірання за аб'ектамі навукоўцы ўбачылі, што можа існаваць толькі два спіна - уздоўж і папярок. Як ні дзіўна, у іншых палажэннях часціцы назіральніку не «пазіруюць».

Новая гіпотэза - новы погляд на свет

Вывучэнне мікракосмасу - прасторы элементарных часціц - спарадзіла мноства гіпотэз і здагадак. Эфект квантавай заблытанасці наштурхнуў навукоўцаў на думку аб існаванні нейкай квантавай микрорешётки. На іх думку, у кожным вузле - пункце перасячэння - знаходзіцца квант. Уся энергія - цэласная рашотка, а праява і рух часціц магчыма толькі праз вузлы рашоткі.

Памер «вокны» такі рашоткі досыць малы, і вымярэнне сучасным абсталяваннем немагчыма. Аднак, каб пацвердзіць або абвергнуць гэтую гіпотэзу, навукоўцы вырашылі вывучыць рух фатонаў ў прасторавай квантавай рашотцы. Сутнасць у тым, што фатон можа рухацца альбо прама, альбо зігзагамі - па дыяганалі краты. У другім выпадку, пераадолеўшы вялікую дыстанцыю, ён патраціць больш энергіі. Адпаведна, будзе адрознівацца ад фатона, які рухаецца па прамой лініі.

Магчыма, з часам мы даведаемся, што жывем у прасторавай квантавай рашотцы. Ці ж гэта здагадка можа апынуцца няслушным. Аднак менавіта прынцып квантавай заблытанасці паказвае на магчымасць існавання краты.

Калі казаць простай мовай, то ў гіпатэтычным прасторавым «кубе» вызначэнне адной грані нясе за сабой выразны супрацьлеглае значэнне іншы. Такі прынцып захавання структуры прастора - час.

эпілог

Каб разумець чароўны і загадкавы свет квантавай фізікі, варта ўважліва прыгледзецца ў ход развіцця навукі за апошнія пяцьсот гадоў. Раней лічылася, што Зямля мае плоскую форму, а не сферычную. Прычына відавочная: калі прыняць яе форму круглай, то вада і людзі не змогуць утрымацца.

Як мы бачым, праблема існавала ў адсутнасці поўнага бачання усіх дзеючых сіл. Магчыма, што сучаснай навуцы для разумення квантавай фізікі не хапае бачання усіх дзеючых сіл. Прабелы бачання спараджаюць сістэму супярэчнасцяў і парадоксаў. Магчыма, магічны свет квантавай механікі захоўвае ў сабе адказы на пастаўленыя пытанні.

Similar articles

 

 

 

 

Trending Now

 

 

 

 

Newest

Copyright © 2018 be.atomiyme.com. Theme powered by WordPress.